R18

Code No: 153AP
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, September - 2021

ELECTRICAL CIRCUIT ANALYSIS
(Electrical and Electronics Engineering)
Time: 3 hours
Max. Marks: 75

Answer any five questions
 All questions carry equal marks

1.a) State and explain reciprocity theorem in detail.
b) Using Mesh analysis, find V and I in the circuit below figure 1.

Figure: 1
2.a) State and Explain Thevenin's theorem in detail.
b) Find the maximum power transferred to load resistance R_{L} in the circuit below figure 2 .

Figure: 2
3.a) Derive the expression for the complete response for the voltage across resistor in parallel RL circuit excited by DC supply at $t=0$.
b) In the circuit below figure 3 , find $\mathrm{i}\left(0^{+}\right), \frac{d\left(\left(0^{+}\right)\right)}{d t}$ and $\frac{d^{2}\left(i\left(0^{+}\right)\right)}{d t^{2}}$

Figure: 3

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

4.a) Derive the expression for the complete response for the current in a series RC circuit excited by sinusoidal supply by closing the switch at $t=0^{+}$.
b) For the circuit given below figure $4, \mathrm{~V} \quad 0=10 \mathrm{~V}$ and the inductor is initially relaxed. The switch S is closed at $\mathrm{t}=0$. Derive the expression for ' i '.
[7+8]

Figure: 4
5.a) Prove that the line current is $\sqrt{ } 3$ times the phase current in three phase delta connected balanced system
b) A resistance of 10Ω is connected in parallel with a $2 \mu \mathrm{~F}$ capacitor and the network is connected to a $120 \mathrm{~V}, 60 \mathrm{~Hz}$ supply. Determine the current and power in resistor and capacitor.
6.a) Derive the expression for average power in a linear circuit (R-L) excited by sinusoidal voltage source.
b) Three 10Ω resistors are connected in delta across a $150 \mathrm{y}, 50 \mathrm{~Hz}, 3-\varnothing$ supply. Find the line current. Determine the value of resistance that must be connected in star in order to take the same line current.
7.a) Derive the expressions for current and impedance in series RLC circuit at resonance.
b) What are the basic properties of Laplace transforms? Explain.
8.a) Derive the relationship between hybrid and transmission parameters.
b) For the circuit belowd gure 5, determine impedance parameters.

Figure: 5

